
1 | P a g e

Department Of electrical and computer Engineering

ADVANCED DIGITAL SYSTEMS DESIGN

ENCS3310

Project report

Instructor: Dr. Abdallatif AbuIssa

Made By: Islam Jihad

ID: 1191375

Section 2

Date: 25/Nov/2021

2 | P a g e

Table of Contents

Table of figures ... 3

Brief Introduction and Background ... 4

Design philosophy .. 6

Basic Gates .. 6

1-bit Full Adder: .. 7

8-bit Full-Adder: ... 9

Magnitude Comparator in digital logic: ... 10

1-Bit Magnitude Comparator ... 10

2-Bit Magnitude Comparator ... 11

 Stage 1 .. 13

 Stage 2 .. 16

D-Flip Flop ... 18

Test Generator .. 19

Result Analyzer ... 20

Built in Self-Test ... 20

Results... 22

 Stage 1 .. 22

 Stage 2 .. 23

Conclusion and Future works .. 24

References .. 25

Appendix ... 26

3 | P a g e

Table of figures

Figure 1:used gates with delay ... 7

Figure 2: 1bit Full Adder is implemented using AND,OR and XOR gates ... 7

Figure 3: full adder code ... 8

Figure 4:Complete 8-bit Adder ... 9

Figure 5: 8-bit full adder code ... 9

Figure 6:1 bit magnitude comparator ... 10

Figure 7:1-bit magnitude comparator code .. 10

Figure 8:: 2 bit magnitude comparator ... 11

Figure 9:2bit magnitude comparator code ... 12

Figure 10:comparator truth table ... 13

Figure 11:comparator stage 1 code ... 14

Figure 12: stage1 output ... 15

Figure 13:Comparatore stage2 code .. 16

Figure 14:stage2 output .. 17

Figure 15:d-flip flop truth table .. 18

Figure 16: d flip-flop code ... 18

Figure 17:test code ... 19

Figure 18:result analyzer code .. 20

Figure 19:Built In Self Test code for adder comparator .. 21

Figure 20:Built In Self-Test code for magnitude comparator ... 21

Figure 21:simulation outcomes .. 22

Figure 22:outcome of the simulation ... 23

Figure 23: test the output by creation error ... 23

4 | P a g e

Brief Introduction and Background

We'll build a signed 8-bit comparator in two parts in this project. This system will be made up of
little entities that will also be made up of a small number of entities. Table 1 shows how we'll employ
the fundamental gates with various delays. Regardless of the number of inputs, the fundamental gates
have the same delay.

Gate Delay

Inverter 2 ns

NAND 5 ns

NOR 5 ns

AND 7 ns

OR 7 ns

XNOR 9 ns

XOR 12 ns

5 | P a g e

We will create a 1-bit full adder using the basic gates listed above, and then an 8-bit full
adder/subtractor, which may be used to implement the adder comparator approach.

And we will create a 1-bit magnitude comparator and 2- bit too, it will be used in the second stage.

The two stages that we will build the system: first, the full adder subtraction as a comparator, is

using an adder with (ripple and/or look ahead) full adder 8 times. And the second stage is the
magnitude comparator, we had learned them in Digital course.

We will calculate the duration of delay for each stage to use in testing the outputs.

For each step, there will be a Built-In Self-Test (BIST) with two registers: The first register is the
test generator, which sends the inputs to our system and sends the outputs to the second register,
which has a clock input. The second register is the Result analyzer, which receives the behavioral output
from the test generator and the system's output, and ensures that the two outputs are correct.

We will simulate our system, test it, and ensure that the outputs are valid using Aldec Active-
HDL Student Edition.

6 | P a g e

Design philosophy

Basic Gates

First, we created the basic gates as shown in Figure 1. There was an idea to create a single entity
for each basic gate and make it generic with a N variable that determines the number of inputs, but it is
difficult to construct and call the gate entity in other entities. On the other hand, we made the needed
gates that need more than 2 inputs with the same delay to reduce delay.

7 | P a g e

FIGURE 1:USED GATES WITH DELAY

1-bit Full Adder:

A full adder is a combinational circuit that forms the arithmetic sum of three input bits. It
has two inputs: X and Y, that represent the two significant bits to be added, and a Z input that is a
carry-in from the previous significant position. It has two outputs: S which is the sum of the two
input bits which can be 0-3 and Z to carry the value in case the output from S is 2 or 3 because the
binary forms of these require two digits for their representation.[2]

FIGURE 2: 1BIT FULL ADDER IS IMPLEMENTED USING AND,OR AND XOR GATES

8 | P a g e

FIGURE 3: FULL ADDER CODE

This full adder is constructed as shown in Figure 3 to be utilized later in the construction of a 8-
bit full adder. The maximum delay time was 24 ns.

9 | P a g e

8-bit Full-Adder:

I take 8 of these full adders(1-bit full adder), and combine them to create an 8-bit Adder. In an 8
bit adder the full adders are connected in a cascade with a 1 carry cascading from a least significant bit
to the most significant bit.[2]

FIGURE 4:COMPLETE 8-BIT ADDER

And the carry out of the last bit and the one before to get the overflow from them later, the
delay that needed in this circuit was 24 ns only! It looks like it worked as a lookahead.

The code of the circuit is shown below.

FIGURE 5: 8-BIT FULL ADDER CODE

10 | P a g e

Magnitude Comparator in digital logic:

It’s a combinational circuit that compares two digital or binary numbers in order to find out
whether one binary number is equal, less than or greater than the other binary number. I logically
design a circuit for which we will have two inputs one for A and other for B and have three output
terminals, one for A > B condition, one for A = B condition and one for A < B condition. [1]

1-Bit Magnitude Comparator

A single bit comparator used to compare two bits. It consists of two inputs each for two single
bit numbers and three outputs to generate less than, equal to and greater than between two binary
numbers. [1]

FIGURE 6:1 BIT MAGNITUDE COMPARATOR

The following figure show the code. The delay was 14 ns which is good.

FIGURE 7:1-BIT MAGNITUDE COMPARATOR CODE

11 | P a g e

2-Bit Magnitude Comparator

This comparator used to compare two binary numbers each of two bits. It consists of four inputs
and three outputs to generate less than, equal to and greater than between two binary numbers. [1]

I used the gates that we made with their delay to compare it with physical and real life.

FIGURE 8:: 2 BIT MAGNITUDE COMPARATOR

12 | P a g e

Here is the code picture, the delay was 16 ns which is good

FIGURE 9:2BIT MAGNITUDE COMPARATOR CODE

13 | P a g e

 Stage 1

In this stage we were required to make a comparator between A and B using the full adders, so
what I did was to get the 2’s complement of B by XOR it with 1 and log it into full adder with A, so we
will get this formula: A + (-B) = A - B

As a result, the answer if was 0 that means that A and B are equals, on the other hand to know if A>B or
A<B I had to solve it and find a function that give me a relation and found this:

FIGURE 10:COMPARATOR TRUTH TABLE

If the XOR between overflow and the 8th bit of the answer of the summation was 1 this means A<B and
if 0 then A>B and applied this as a code.

14 | P a g e

The next figure shows the code:

FIGURE 11:COMPARATOR STAGE 1 CODE

I made XOR gate with “11111111” to negative all B digits to be subtracted

 Then I insert it with A into the 8 bit adder subtractor to work like subtractor as it has the B is xor
with 1 and have a Cin =1 to work as subtractor

 Then I XOR the Carry out with the carry out of the previous one to get the overflow
 Then I made XOR between overflow and the last bit of the summation answer to check ether it's

greater or smaller (A & B)
 And added a nor gate for all summation result index so to know ether the sum =0 or not
 The delay needed was 127 ns and that's strange a bit.

15 | P a g e

The simulation of the results was good but with some glitches because O didn’t use a register
flip flop till now, here is some results

FIGURE 12: STAGE1 OUTPUT

16 | P a g e

 Stage 2

Here we were asked to make the comparator using the magnitude comparator method,
so what I did was creating 7-bit magnitude comparator by using the 1-bit and used the 2-bits 3
times and the last bit was the sign bit so there is no need to add it, it’s a comparison between 2
digits, if one of them was a negative and the other was positive then the answer will pop up fast
but if they both were positive/negative then I have to use the magnitude comparator.

The delay of this circuit was 16 ns and that’s good, here is a screenshot of the code:

FIGURE 13:COMPARATORE STAGE2 CODE

17 | P a g e

The simulation of the results was very good and here is some results

FIGURE 14:STAGE2 OUTPUT

18 | P a g e

D-Flip Flop

This register works as shown below:

FIGURE 15:D-FLIP FLOP TRUTH TABLE

It was used to get rid of glitches that appears on the comparator to get clear results; the code
of DFF is shown below:

FIGURE 16: D FLIP-FLOP CODE

It solved the glitches, and therefore it was added in every stage with a controlled clock by the
Built In Self-Test.

19 | P a g e

Test Generator

This generator contains a clock input, A, B inputs, and the proper output. Its design
comprises two processes: the first produces the correct output in behavioral logic, and the
second modifies (increments) the values of A and B as the clock input increases to reach all
conceivable inputs.

FIGURE 17:TEST CODE

And the outputs of random A and B will go to the circuit I made to be calculated and the
result will be compared with the correct ones that had been solved, this will happen in the next
level which is called result analyzer.

20 | P a g e

Result Analyzer

When the clock input increases as illustrated, this analyzer confirms that the outputs are
proper. If not, it will give an error message. Here is the code:

FIGURE 18:RESULT ANALYZER CODE

Built in Self-Test

This entity has the whole system with a test generator and result analyzer, as illustrated
in Figure - in two phases. The clock signal inverses after a set period, and the test generator
changes A and B signals and sends the right output to the result analyzer. The outputs A and B
are sent to the system, which generates an output. This output is then sent to the result
analyzer, which determines whether or not the output is valid based on the test generator's
proper result. The clock signal for the generator and analyzer will be the same. The delay is the
difference between the two phases.

21 | P a g e

FIGURE 19:BUILT IN SELF TEST CODE FOR ADDER COMPARATOR

FIGURE 20:BUILT IN SELF-TEST CODE FOR MAGNITUDE COMPARATOR

22 | P a g e

 Results

 Stage 1

We can see that the shortest period to avoid delay issues is 127 nanoseconds, and it will not
display an error. Therefore, I increase it by 3 ns to make sure.

The outcomes of the simulation, as well as the discrepancy between the behavioral output
and the actual output, are shown in these images.

FIGURE 21:SIMULATION OUTCOMES

23 | P a g e

 Stage 2

We can see that the shortest period to avoid delay issues is 16 nanoseconds, and it will not
display an error. Therefore, I increase it by 3 ns to make sure.

The outcomes of the simulation, as well as the discrepancy between the behavioral output and
the actual output, are shown in these images.

FIGURE 22:OUTCOME OF THE SIMULATION

And I tried to create an error on purpose to check if this is working well or not

FIGURE 23: TEST THE OUTPUT BY CREATION ERROR

24 | P a g e

Conclusion and Future works

The outcomes of the preceding operations are consistent with the theoretical
results. Furthermore, we infer that we can build large systems using smaller ones.

We successfully construct an 8-bit signed comparator and then write a functioning
verification method. We discovered that the built-in test is helpful in ensuring that the
results are accurate.

In our system, we learnt about two kinds of adders and saw the difference
between the ripple full adder and the carry lookahead adder since it cuts latency
significantly. Because the carry of each 1-bit complete adder is independent of the
preceding carries save the first, the lookahead adder is quicker than the ripple adder, so
we knew what the differences are between the 2 stages.

 And how the full adder can be implemented to work in much things.

And how useful it is to use the small blocks instead of creating one huge entity.

We learned more about VHDL and how to create commands such as printing an error,
delaying a signal, testing systems, and creating entities in behavioral and structural
logics. We also used Aldec HDL to simulate our project and observe the signals of the
entity on which we worked.

25 | P a g e

References

[1] "GeeksForGeeks," 19 Feb 2021. [Online]. Available: https://www.geeksforgeeks.org/magnitude-
comparator-in-digital-logic/. [Accessed 24 12 2021].

[2] "UIC Computer Science," [Online]. Available: https://www.cs.uic.edu/~i266/hwk6/42.pdf.

26 | P a g e

Appendix

library ieee;

USE ieee.std_logic_1164.ALL;

entity Inverter is

 port(a: in std_logic;

 b: out std_logic);

end entity Inverter;

architecture strct of Inverter is

begin

 b<= not a after 2 ns;

end architecture strct;

--********************************

library ieee;

USE ieee.std_logic_1164.ALL;

entity NANDG is

 port(a,b: in std_logic;

 c: out std_logic);

end entity NANDG;

27 | P a g e

architecture strct of NANDG is

begin

 c<= a nand b after 5 ns;

end architecture strct;

--********************************

library ieee;

USE ieee.std_logic_1164.ALL;

entity NORG is

 port(a,b: in std_logic;

 c: out std_logic);

end entity NORG;

architecture strct of NORG is

begin

 c<= a nor b after 5 ns;

end architecture strct;

--********************************

library ieee;

28 | P a g e

USE ieee.std_logic_1164.ALL;

entity ANDG is

 port(a,b: in std_logic;

 c: out std_logic);

end entity ANDG;

architecture strct of ANDG is

begin

 c<= a and b after 7 ns;

end architecture strct;

--********************************

library ieee;

USE ieee.std_logic_1164.ALL;

entity ORG is

 port(a,b: in std_logic;

 c: out std_logic);

end entity ORG;

architecture strct of ORG is

begin

29 | P a g e

 c<= a or b after 7 ns;

end architecture strct;

--********************************

library ieee;

USE ieee.std_logic_1164.ALL;

entity XNORG is

 port(a,b: in std_logic;

 c: out std_logic);

end entity XNORG;

architecture strct of XNORG is

begin

 c<= a xnor b after 9 ns;

end architecture strct;

--********************************

library ieee;

USE ieee.std_logic_1164.ALL;

30 | P a g e

entity XORG is

 port(a,b: in std_logic;

 c: out std_logic);

end entity XORG;

architecture strct of XORG is

begin

 c<= a xor b after 12 ns;

end architecture strct;

--********************************

library ieee;

USE ieee.std_logic_1164.ALL;

entity AND3G is

 port(a,b,d: in std_logic;

 c: out std_logic);

end entity AND3G;

architecture strct of AND3G is

begin

 c<= a and b and d after 7 ns;

31 | P a g e

end architecture strct;

--********************************

library ieee;

USE ieee.std_logic_1164.ALL;

entity OR3G is

 port(a,b,d: in std_logic;

 c: out std_logic);

end entity OR3G;

architecture strct of OR3G is

begin

 c<= a or b or d after 7 ns;

end architecture strct;

--********************************

library ieee;

USE ieee.std_logic_1164.ALL;

entity XOR_subG is

 port(a: in std_logic_vector(7 downto 0);

 c: out std_logic_vector(7 downto 0));

end entity XOR_subG;

32 | P a g e

architecture strct of XOR_subG is

begin

 c<= a xor "11111111" after 12 ns;

end architecture strct;

--********************************

library ieee;

USE ieee.std_logic_1164.ALL;

entity NOR8G is

 port(a: in std_logic_vector(7 downto 0);

 c: out std_logic);

end entity NOR8G;

architecture strct of NOR8G is

signal s: std_logic;

begin

 s<= a(0) or a(1) or a(2) or a(3) or a(4) or a(5) or a(6) or a(7);

 c<= not s after 5 ns;

end architecture strct;

33 | P a g e

-- one bit full adder circuit

library ieee;

USE ieee.std_logic_1164.ALL;

entity FA is

 port(A,B,Cin:in std_logic;

 s,Cout:out std_logic);

end entity FA;

architecture one_bit_adder of FA is

signal s1,s2,s3,s4,s5: std_logic;

begin

 g1: entity work.XORG(strct) port map(A,B,s1);

 g2: entity work.ANDG(strct) port map(A,B,s2);

 g3: entity work.ANDG(strct) port map(Cin,s1,s3);

 g4: entity work.XORG(strct) port map(s1,Cin,s4);

 g5: entity work.ORG(strct) port map(s2,s3,s5);

 s<=s4;

 Cout<=s5;

 --24 ns needed to give correct answer

end architecture one_bit_adder;

34 | P a g e

--8 bits full adder

library ieee;

USE ieee.std_logic_1164.ALL;

entity bit8_adder is

 port(A,B:in std_logic_vector(7 downto 0);

 Cin:in std_logic;

 sum:out std_logic_vector(7 downto 0);

 Cout6, Cout:out std_logic);

end entity bit8_adder;

architecture strct of bit8_adder is

signal s,c:std_logic_vector(7 downto 0);

begin

 g1: entity work.FA(one_bit_adder) port map(A(0),B(0),Cin,s(0),c(0));

 g2: entity work.FA(one_bit_adder) port map(A(1),B(1),c(0),s(1),c(1));

 g3: entity work.FA(one_bit_adder) port map(A(2),B(2),c(1),s(2),c(2));

 g4: entity work.FA(one_bit_adder) port map(A(3),B(3),c(2),s(3),c(3));

 g5: entity work.FA(one_bit_adder) port map(A(4),B(4),c(3),s(4),c(4));

 g6: entity work.FA(one_bit_adder) port map(A(5),B(5),c(4),s(5),c(5));

 g7: entity work.FA(one_bit_adder) port map(A(6),B(6),c(5),s(6),c(6));

35 | P a g e

 g8: entity work.FA(one_bit_adder) port map(A(7),B(7),c(6),s(7),c(7));

 Cout6<=c(6);

 Cout<=c(7);

 sum<=s;

 -- 24 ns needed for delay correction

end architecture strct;

--entities to make the magnitude comparator

--I'll make a 1 bit comparator and 2X3 bit comparators*************************************

library ieee;

USE ieee.std_logic_1164.ALL;

entity one_bit is

 port(a,b: in std_logic;

 F:out std_logic_vector(2 downto 0));

end entity one_bit;

architecture strct of one_bit is

signal s1,s2,s3,s4,s5:std_logic;

begin

36 | P a g e

 g1: entity work.Inverter(strct) port map(A,s1);

 g2: entity work.Inverter(strct) port map(B,s2);

 g3: entity work.ANDG(strct) port map(B,s1,s3); --A<B

 g4: entity work.ANDG(strct) port map(A,s2,s4); --A>B

 g5: entity work.NORG(strct) port map(s3,s4,s5); --A=B

 F<=(s5 & s3 & s4);

 -- 14 ns delay

end architecture strct;

library ieee;

USE ieee.std_logic_1164.ALL;

entity two_bit is

 port(Fin: in std_logic_vector(2 downto 0);

 a1,a0,b1,b0: in std_logic;

 Fout:out std_logic_vector(2 downto 0));

end entity two_bit;

37 | P a g e

architecture strct of two_bit is

signal na1,na0,nb1,nb0:std_logic;

signal a:std_logic_vector(5 downto 0);

signal n:std_logic_vector(1 downto 0);

signal smaller, equall, greater: std_logic;

signal f: std_logic_vector(2 downto 0);

begin

-- compare if the previous bits are greater to pass the answer or not to start calculating

 Fout<="010" when Fin="010"

else

 "001" when Fin="001"

else

 f when Fin="100"

else

 f when Fin="100";

38 | P a g e

--===

--the design of the 2 bit cercuit to compare

--===

 nota1: entity work.Inverter(strct) port map(A1,na1);

 nota0: entity work.Inverter(strct) port map(A0,na0);

 notb1: entity work.Inverter(strct) port map(B1,nb1);

 notb0: entity work.Inverter(strct) port map(B0,nb0);

 -- smaller gates to connect

 g1: entity work.ANDG(strct) port map(na1,B1,a(0));

 g2: entity work.AND3G(strct) port map(na0,B1,B0,a(1));

 g3: entity work.AND3G(strct) port map(na1,na0,B0,a(2));

 g4: entity work.OR3G(strct) port map(a(0),a(1),a(2),smaller);

 -- equall gates to connect

 g5: entity work.XNORG(strct) port map(A1,B1,n(0));

 g6: entity work.XNORG(strct) port map(A0,B0,n(1));

 g7: entity work.ANDG(strct) port map(n(0),n(1),equall);

 -- greater gates to connect

 g8: entity work.ANDG(strct) port map(A1,nb1,a(3));

 g9: entity work.AND3G(strct) port map(A0,nb1,nb0,a(4));

 g10:entity work.AND3G(strct) port map(A1,A0,nb0,a(5));

 g11:entity work.OR3G(strct) port map(a(3),a(4),a(5),greater);

39 | P a g e

 f<=(equall & smaller & greater);

 --16 ns delay

end architecture strct;

-- D Flip Flop to get off delays

library ieee;

use ieee.std_logic_1164.all;

entity dfflop is

 port(clk, d:in std_logic;

 o : out std_logic);

end entity dfflop;

architecture rise_dff of dfflop is

begin

 process(clk)

 begin

 if(rising_edge(clk)) then

 o <= d;

 end if;

 end process;

end rise_dff;

--**

40 | P a g e

library ieee;

USE ieee.std_logic_1164.ALL;

entity comparator is

 port(clk: in std_logic;

 A,B: in std_logic_vector(7 downto 0);

 Fq,Fg,Fs:out std_logic);

end entity comparator;

-- the comparator using full adder

architecture adder_comp of comparator is

signal Bxored, sum: std_logic_vector(7 downto 0);

signal cout6, cout, Ov, res,equall : std_logic;

signal Fout: std_logic_vector(2 downto 0);

signal fqr, fgr,fsr: std_logic;

begin

 XORB: entity work.XOR_subG(strct) port map(B, Bxored); -- to nigative all B
digits to be subtracted

 FA8: entity work.bit8_adder(strct) port map(A, Bxored, '1', sum, cout6, cout); -
- 8 bit adder subtractor work

 --like subtractor as it has the B is xor with 1 and have a Cin =1 to work as
subtract

41 | P a g e

 g1: entity work.XORG(strct) port map(cout6, cout, Ov); -- to get the over flow
by making xor between the Cout and the previous cout

 g2: entity work.XORG(strct) port map(Ov, sum(7), res); -- to check ether it's
grater or smaller (A & B)

 g3: entity work.NOR8G(strct) port map(sum, equall); -- a nor gate for all
summation result index so to know ether the sum =0 or not

 Fout<= "100" when equall='1'

 else

 "001" when res='1'

 else

 "010" when res='0';

 Fqr<= Fout(2);

 Fgr<= Fout(1);

 Fsr<= Fout(0);

 g4: entity work.dfflop(rise_dff) port map(clk,Fqr,Fq);

 g5: entity work.dfflop(rise_dff) port map(clk,Fgr,Fg);

 g6: entity work.dfflop(rise_dff) port map(clk,Fsr,Fs);

-- delay needed is 127 ns for this circuit

-- so th clk will be 127 ns

--clk<= not clk after 127 ns;

42 | P a g e

end architecture adder_comp;

--***

-- the comparator using magnitude comparator

architecture mag_comp of comparator is

signal result, s1, s2, s3, Fout: std_logic_vector(2 downto 0);

signal Fqr, Fgr, Fsr: std_logic;

begin

 Fout<="010" when A(7)='1' and B(7)='0'

else

 "001" when A(7)='0' and B(7)='1'

else

 result when A(7)='1' and B(7)='1'

else

 result when A(7)='0' and B(7)='0';

 g1: entity work.one_bit(strct) port map(A(6), B(6), s1);

 g2: entity work.two_bit(strct) port map(s1, A(5),A(4), B(5),B(4), s2);

 g3: entity work.two_bit(strct) port map(s2, A(3),A(2), B(3),B(2), s3);

 g4: entity work.two_bit(strct) port map(s3, A(1),A(0), B(1),B(0), result);

 Fqr<= Fout(2);

43 | P a g e

 Fsr<= Fout(1);

 Fgr<= Fout(0);

 g5: entity work.dfflop(rise_dff) port map(clk,Fqr,Fq);

 g6: entity work.dfflop(rise_dff) port map(clk,Fgr,Fg);

 g7: entity work.dfflop(rise_dff) port map(clk,Fsr,Fs);

-- delay needed is 16 ns for this circuit

-- so th clk will be 16 ns

--clk<= not clk after 16 ns;

end architecture mag_comp;

--islam jihad 1191375

library ieee;

USE ieee.std_logic_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity testbanch is

end;

architecture test of testbanch is

44 | P a g e

signal testa,testb:std_logic_vector(7 downto 0):="00000000";

signal sum: std_logic_vector(7 downto 0);

signal cin:std_logic:='0';

signal cout: std_logic;

begin

 g1: entity work.bit8_adder(strct) port map(testa, testb,cin,sum,cout);

 testa<=testa + 1 after 200 ns;

 testb<=testb + 1 after 400 ns;

 cin<= not cin after 800 ns;

end;

--***************************************

library ieee;

USE ieee.std_logic_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity testbanch1 is

end;

architecture test of testbanch1 is

45 | P a g e

signal testa,testb:std_logic_vector(7 downto 0):="00000000";

signal ans: std_logic_vector(2 downto 0);

signal Fq, Fs, Fg,clk: std_logic;

begin

 g1: entity work.mag_comp(strct) port map(clk, testa, testb,Fq, Fs, Fg);

 testa<=testa + 1 after 200 ns;

 testb<=testb + 1 after 400 ns;

end;

46 | P a g e

--

----------------- Test Generator -----------------

--

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

USE ieee.std_logic_ARITH.ALL;

USE ieee.std_logic_UNSIGNED.ALL;

ENTITY TestGenerator IS

PORT(clk: IN STD_LOGIC:='0';

A,B: OUT STD_LOGIC_VECTOR(7 DOWNTO 0):="00000000";

FqCorr, FgCorr, FsCorr: OUT STD_LOGIC:='0');

END TestGenerator;

ARCHITECTURE generator OF TestGenerator IS

SIGNAL AA,BB: STD_LOGIC_VECTOR(7 DOWNTO 0):="00000000";

SIGNAL x: STD_LOGIC_VECTOR(2 DOWNTO 0):="000";

BEGIN

 A<=AA;

 B<=BB;

 FqCorr<=X(2);

 FgCorr<=X(1);

 FsCorr<=X(0);

47 | P a g e

 -- The Process Below calculate the behavioural results

 PROCESS (clk)

 BEGIN

 if (AA = BB) then

 x<="100";

 elsif (AA > BB) then

 x<="010";

 elsif (AA < BB) then

 x<="001";

 end if;

 END PROCESS;

 -- this 2 loops to make sure to check all the possible results between A
and B

 PROCESS

 BEGIN

 FOR i IN 0 TO 255 LOOP

 FOR j IN 0 TO 255 LOOP

 AA(7 DOWNTO 0) <=
CONV_STD_LOGIC_VECTOR(i,8);

 BB(7 DOWNTO 0) <=
CONV_STD_LOGIC_VECTOR(j,8);

48 | P a g e

 WAIT UNTIL rising_edge(CLK);

 END LOOP;

 END LOOP;

 WAIT;

 END PROCESS;

END;

--

----------------- Result Analyser ----------------

--

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

USE ieee.std_logic_ARITH.ALL;

ENTITY ResultAnalyser IS

PORT(CLK: IN STD_LOGIC:='0';

 Fqc, Fgc, Fsc, Fq, Fg, Fs: IN STD_LOGIC:='0');

END ResultAnalyser;

ARCHITECTURE analyser OF ResultAnalyser IS

BEGIN

-- The code below is to make sure that the result from my system equals to the correct
one or not

-- if not it will print an error when the outputs are not equal to each other

PROCESS

49 | P a g e

BEGIN

assert (Fqc = Fq and Fgc = Fg and Fsc = Fs)

report "The results that were obtained from your design don't agree with the correct
results"

severity ERROR;

WAIT UNTIL rising_edge(CLK);

END PROCESS;

END;

--

--------------- Built In Self Test ---------------

--

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

USE ieee.std_logic_ARITH.ALL;

ENTITY BIST IS

END ENTITY BIST;

--

-------- Test For The adder comparator ---------

ARCHITECTURE adder_comp OF BIST IS

SIGNAL clk: STD_LOGIC:='0';

SIGNAL A,B: STD_LOGIC_VECTOR(7 DOWNTO 0):="00000000";

SIGNAL Fq, Fg, Fs,Fqc, Fgc, Fsc: STD_LOGIC:='0';

BEGIN

50 | P a g e

-- 127 ns is the minimum delay we should have to have a correct output

-- so I'll increse it 3 ns to make sure of the of the correct answer

CLK <= NOT CLK AFTER 130 NS;

G1: ENTITY WORK.TestGenerator(generator) PORT MAP(clk, A, B, Fqc, Fgc, Fsc);

G2: ENTITY WORK.comparator(adder_comp) PORT MAP(clk, A, B, Fq, Fg, Fs);

G3: ENTITY WORK.ResultAnalyser(analyser) PORT MAP(clk, Fqc, Fgc, Fsc, Fq, Fg,
Fs);

END ARCHITECTURE adder_comp;

--

------ Test For The magnitude comparator -------

ARCHITECTURE mag_comp OF BIST IS

SIGNAL clk: STD_LOGIC:='0';

SIGNAL A,B: STD_LOGIC_VECTOR(7 DOWNTO 0):="00000000";

SIGNAL Fq, Fg, Fs,Fqc, Fgc, Fsc: STD_LOGIC:='0';

BEGIN

-- 16 ns is the minimum delay we should have to have a correct output

51 | P a g e

-- so I'll increse it 3 ns to make sure of the of the correct answer

CLK <= NOT CLK AFTER 16 NS;

G1: ENTITY WORK.TestGenerator(generator) PORT MAP(clk, A, B, Fqc, Fgc, Fsc);

G2: ENTITY WORK.comparator(mag_comp) PORT MAP(clk, A, B, Fq, Fg, Fs);

G3: ENTITY WORK.ResultAnalyser(analyser) PORT MAP(clk, Fqc, Fgc, Fsc, Fq, Fg,
Fs);

END ARCHITECTURE mag_comp;

52 | P a g e

